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flow. With N points in the discretization of the boundary,
direct inversion of the resulting linear systems requiresWe present a class of integral equation methods for the solution

of biharmonic boundary value problems, with applications to two- O(N 3) operations. Most iterative methods, on the other
dimensional Stokes flow and isotropic elasticity. The domains may hand, require only O(N 2) work and do not require storage
be multiply-connected and finite, infinite or semi-infinite in extent. of a dense matrix [13, 18, 22, 23]. Our algorithms are also
Our analytic formulation is based on complex variables, and our

based on iteration, but require only O(N) operations, sincefast multipole-based iterative solution procedure requires O(N) op-
they use a version of the fast multipole method [1, 5, 6, 23]erations, where N is the number of nodes in the discretization of
to compute matrix–vector products. Earlier fast multipole-the boundary. The performance of the methods is illustrated with

several large-scale numerical examples. Q 1996 Academic Press, Inc. accelerated schemes for biharmonic problems [3] were lim-
ited to simply-connected interior domains.

We begin, in the next section, with the biharmonic for-
1. INTRODUCTION mulation of three typical target problems. In Section 3, we

briefly review the relevant complex variable theory and
During the last century, a variety of integral equation describe the Sherman–Lauricella integral equations. We

formulations have been proposed for the problems of also discuss the connection between our approach and
Stokes flow and isotropic elasticity. Kolosov, Mikhlin, the ‘‘completed double layer method’’ of Kim, Karrila,
Muskhelishvili, and Sherman, for example, have developed Miranda, and Power [9, 18, 21]. The latter methods, how-
an extensive theory based on complex variables [8, 15, 17, ever, have not been coupled with modern fast algorithms
19, 25] which provides the analytic foundation for our in order to efficiently solve large-scale problems.
discussion. For an alternative approach, using fundamental Section 4 contains a detailed description of the discrete
solutions expressed in terms of primitive variables, we refer algorithm, and Section 5 contains several numerical ex-
the reader to the literature [8, 10, 18, 22]. It is well known amples.
that two-dimensional Stokes flow and plane elasticity are

2. THE BIHARMONIC POTENTIALclosely related. Both can be expressed as biharmonic equa-
tions for a scalar potential function, although the boundary

Many problems in plane strain involve a model in whichconditions differ.
one can assume that the elastic displacements of a longIn this paper, we present a collection of integral equation
cylindrical body occur only in planes parallel to themethods for biharmonic boundary value problems in multi-
(x, y) plane and that the components of displacement areply-connected domains, which may be finite, infinite, or
independent of z. To describe the governing partial differ-semi-infinite (wall-bounded) in extent. Our starting point
ential equations, we let u and v be the components ofis the classical Sherman–Lauricella equation, which was
displacement and sx , sy , and txy be the components ofderived in order to solve problems of elasticity. We have
stress. To fix notation, let us consider a finite domain Dextended this theory to be able to solve problems of Stokes
with boundary G which is (M 1 1)-ply connected. The
outer boundary of D will be denoted by G0 and the interior

1 Supported by the Applied Mathematical Sciences Program of the contours by G1 , G2 , ... GM (Fig. 1). In the absence of body
U.S. Department of Energy under Contract DEFGO288ER25053, by a forces [17, 19, 25], the equations of equilibrium are
NSF Presidential Young Investigator Award, and by a Packard Founda-
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D(DW) 5 0. The boundary conditions for the stress prob-
lem (4) then take the form



s SW
x D (t) 5 2Y(t),



s SW
y D (t) 5 X(t), t [ G, (5)

where /s denotes the tangential derivative. Integrating
these boundary conditions, we can write the stress prob-
lem as

D2W(x) 5 0 x [ D

(6)

W
x

(t) 5 2E
Gk

Y ds 5 g1(t) 1 A1(k),

W
y

(t) 5 E
Gk

X ds 5 g2(t) 1 A2(k),6 t [ Gk .FIG. 1. A bounded multiply-connected domain D. The outer bound-
ary is denoted by G0 and the interior contours by G1 , ..., GM .

The constants of integration A1(k) and A2(k) may be fixed
sx 5 (l 1 2e)

u
x

1 l
v
y

, sy 5 l
u
x

1 (l 1 2e)
v
y

(2)
arbitrarily on one boundary, say by setting A1(0) 5 A2(0) 5
0. For multiply-connected domains, however, the constants
of integration may be different on each contour, and their

txy 5 e Su
y

1
v
xD , values are obtained as part of the solution process. In fact,

they are determined by the condition that the displace-
ments be single-valued functions in D. The boundary con-where l and e are the Lamé coefficients and appropriate
ditions for the displacement problem are not easily ex-boundary conditions. The ‘‘first fundamental problem’’ in
pressed in term of the scalar stress function W. On theplane elasticity [15] is to find the state of elastic equilibrium
other hand, they are easily expressed in terms of the com-when the displacements are specified on G:
plex variable theory developed below.

Our third target problem is that of slow viscous flow,
u(t) 5

1
2e

f1(t), v(t) 5
1

2e
f2(t), t [ G. (3) for which the Navier–Stokes equations can be approxi-

mated by the linear Stokes equations

We will refer to this as the ‘‘displacement problem.’’
The ‘‘second fundamental problem’’ in plane elasticity is n Du 5

1
r

p
x

, n Dv 5
1
r

p
y

(7)
to find the state of elastic equilibrium when given external
stresses are applied to G. We will refer to this as the ‘‘stress (8)ux 1 vy 5 0,
problem.’’ If X, Y are the components of the applied force,
then the appropriate boundary conditions are

where u and v are the components of velocity, r is the
density, n is the viscosity, and p is the pressure. An addi-

s ? (2txy , sx) 5 X(t), s ? (sy , 2txy) 5 2Y(t), t [ G, (4) tional physical quantity of interest is the vorticity

where s is the unit tangent vector to G at t.
z 5 uy 2 vx .The governing equations (1) and (2) can be compactly

expressed in terms of a single scalar function W(x, y),
We will restrict our attention to problems where the veloc-known as Airy’s stress function. Equation (1) is automati-
ity is given on the boundary G:cally satisfied by setting

(9)u 5 h2(t), v 5 2h1(t), t [ G.
sx 5

2W
y2 , sy 5

2W
x 2 , txy 5 2

2W
xy

,

As in the case of the elasticity, the governing equa-
tions can be simplified by introducing a stream functionand substituting the above definitions into the stress–

strain relations (2) yields the biharmonic equation D2W 5 W(x, y) which satisfies the relations
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Muskhelishvili’s formula (11) and the expression for the
u 5

W
y

, v 5 2
W
x

, z 5 DW. displacements (12) allow us to reduce the three fundamen-
tal problems into problems in analytic function theory,
namely that of finding f and c which satisfy appropriateIn this way, Eq. (8) is automatically satisfied, and Eq. (7),
conditions on the boundary G. The boundary conditionstogether with the boundary conditions (9), yields
for the displacement, stress, and Stokes problems are, re-
spectively,D2W(x) 5 0, x [ D

W
x

(t) 5 h1(t),
W
y

(t) 5 h2(t), t [ G.
(10)

kf(t) 2 tf9(t) 2 c(t) 5 f1(t) 1 if2(t) (15)

f(t) 1 tf9(t) 1 c(t) 5 g1(t) 1 ig2(t) 1 A(k) (16)
This is sometimes referred to as the ‘‘third fundamental

f(t) 1 tf9(t) 1 c(t) 5 h1(t) 1 ih2(t), (17)problem.’’
Infinite and simi-infinite domain considerations for all

for t [ Gk , k 5 0, ..., M. Here, we have equated the pointthree problems will be postponed until Sections 3.5 and 3.6.
t [ R2 with the complex point t [ C, t [ Gk for k 5 0, ...,
M, and A(k) 5 A1(k) 1 iA2(k). As noted earlier, for simply-3. THE SHERMAN–LAURICELLA REPRESENTATION
connected domains, the complex constant A(0) in (16) can
be set to zero, so that the stress and Stokes problems areFollowing the discussion of Mikhlin and others [15, 17,
indistinguishable. In multiply-connected domains, elastic-19], we note that any plane biharmonic function W(x, y)
ity problems require that the displacements be single-val-can be expressed by Goursat’s formula as
ued, while Stokes flow problems require that the pressure
be single valued. The corresponding representations for fW(x, y) 5 Re(zf(z) 1 x(z)),
and c must be consistent with these constraints.

where f and x are analytic functions of the complex vari-
3.1. The Displacement Problemable z 5 x 1 iy, and Re( f) denotes the real part of the

complex-valued function f. The functions f(z) and c(z) 5 To find analytic functions f(z) and c(z) which satisfy
x9(z) are known as Goursat functions. A simple calculation (15) on the contour G, Sherman [17, 19] has suggested the
leads to Muskhelishvili’s formula representations

W
x

1 i
W
y

5 f(z) 1 zf9(z) 1 c(z). (11) f(z) 5
1

2fi
E

G

g(j)
j 2 z

dj 1 OM
k51

Ck log(z 2 zk)

This provides an expression for the integrated components
c(z) 5

2k

2fi
E

G

g(j)
j 2 z

dj 1
1

2fi
E

G

g(j)
j 2 z

djof stress in elasticity and the velocity in Stokes flow. Other
physical quantities of interest can be expressed in terms
of the Goursat functions. In elasticity, the displacements

2
1

2fi
E

G

jg(j)
(j 2 z)2 dj 2 OM

k51
kCk log(z 2 zk)

and stresses are found to be given by

2e(u 1 iv) 5 kf(z) 2 zf9(z) 2 c(z),
(12) 2 OM

k51

Ckzk

z 2 zk
.

sx 1 sy 5 4 Re(f9(z)),

sy 2 sx 1 2itxy 5 2(zf0(z) 1 c9(z)), (13) In the preceding expressions, g(j) is an unknown complex
density, the zk are arbitrarily prescribed points inside the

where component curves Gk , and the complex constants Ck are
defined in terms of g(j) via

k 5
l 1 3e
l 1 e

. 1,
Ck 5 E

Gk

g(j) ds,

while in Stokes flow,
where ds is an element of arc length.

If we let z tend to a point t on the contour G and use
z 1

i
n

p 5 4f9(z). (14)
the classical formulae for the limiting values of Cauchy-
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type integrals, we obtain from (15) the Sherman– bk 5 i E
Gk

g(t) dt 2 g(t) dt.
Lauricella integral equation,

Again, letting z tend to a point t on one of the contourskg(t) 1
k

2fi
E

G
g(j) d ln

j 2 t

j 2 t
2

1
2fi

E
G

g(j) d
j 2 t

j 2 t
(18)

Gk , we obtain from (16) the Sherman–Lauricella integral
equation:

1 OM
k51

Ck
t 2 zk

t 2 zk
1 2k OM

k51
Ck logut 2 zku 5 f(t),

g(t) 1
1

2fi
E

G
g(j) d ln

j 2 t

j 2 t
2

1
2fi

E
G

g(j) d
j 2 t

j 2 t
(20)where f(t) 5 f1(t) 1 if2(t). Letting j 2 t 5 reiu, a straightfor-

ward calculation shows that
1

b0

t 2 z*
1 OM

k51

bk

t 2 zk
2 A(k) 5 g(t),

d ln
j 2 t

j 2 t
5 2i du, d

j 2 t

j 2 t
5 2ie2iu du.

where g(t) 5 g1(t) 1 ig2(t), A(0) 5 0, and for k . 0,
we define

Thus, (18) can be written in the form

A(k) 5 2E
Gk

g(j) ds.
kg(t) 1

k

f
E

G
g(j) du 2

1
f
E

G
g(j)e2iu du

(19)
Note that the left-hand side of the integral equation in-

1 OM
k51

Ck
t 2 zk

t 2 zk
1 2k OM

k51
Ck logut 2 zku 5 f(t). cludes the term b0/(t̄ 2 z*), where z* is an arbitrary point

in the domain D and

Assuming that the contours themselves are smooth, the
latter form of the Sherman–Lauricella equation is clearly

b0 5
1

2fi
E

G
F g(t)

(t 2 z*)2 dt 1
g(t)

(t 2 z*)2 dtG .a Fredholm equation of the second kind with smooth ker-
nel, and therefore the Fredholm alternative applies. We
refer the reader to [17 or 19] for a proof of invertibility.

It can be shown [17, 19] that Eq. (20) is invertible and thatWe will simply observe here that, in the absence of the
b0 5 0 as long as the data satisfies the compatibility con-source terms,
dition

OM
k51

Ck
t 2 zk

t 2 zk
1 2k OM

k51
Ck logut 2 zku,

Re E
G

g(t) dt 5 0,

the integral equation above is singular with rank defi- which expresses the fact that the resultant moment of the
ciency 2M. external forces vanishes. In this formulation, the displace-

ments are clearly single valued by inspection of the formula3.2. The Stress Problem
(12). Note that no logarithmic sources have been used in

To satisfy the boundary condition (16) on G, the Sher- the integral representations.
man–Lauricella equation is derived by letting f(z) and
c(z) take the form 3.3. The Stokes Problem

Finally, we consider the construction of functions f and
f(z) 5

1
2fi

E
G

g(j)
j 2 z

dj, c which can be used to satisfy the boundary conditions
(17) of Stokes flow. Letting k 5 21 in the displacement
problem might seem like a reasonable choice, but Eq. (18)

c(z) 5
1

2fi
E

G

g(j) dj 1 g(j) dj

j 2 z would then be singular. We propose the following:

2
1

2fi
E

G

jg(j)
(j 2 z)2 dj 1 OM

k51

bk

z 2 zk
, f(z) 5

1
2fi

E
G

g(j)
j 2 z

dj 1 OM
k51

Ck log(z 2 zk)

where g(j) and zk are defined as in the displacement prob-
c(z) 5

1
2fi

E
G

g(j) dj 1 g(j) dj

j 2 z
(21)

lem, and the bk are real constants defined by
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can be shown to be a linear combination of a ‘‘Stokeslet’’
and a ‘‘Rotlet’’ (see the Appendix).2

1
2fi

E
G

jg(j)
(j 2 z)2 dj 1 OM

k51

bk

z 2 zk
3.5. Unbounded Domains

In order for the components of stress to be bounded at1 OM
k51

Ck log(z 2 zk) 2 OM
k51

Ck
zk

z 2 zk
.

infinity, it can be shown [17] that the Goursat functions
must take the general form

It is important to observe that, while f and c are not
single-valued functions, the physical variables of interest

f(z) 5 2
(X 1 iY)
2f(1 1 k)

log z 1 Gz 1 f*(z)(velocity, pressure, and vorticity) are well defined. Letting
z approach a boundary point t, we obtain

c(z) 5
(X 1 iY)
2f(1 1 k)

log z 1 G9z 1 c*(z),
g(t) 1

1
2fi

E
G

g(j) d ln
j 2 t

j 2 t
2

1
2fi

E
G

g(j) d
j 2 t

j 2 t where G 5 B 1 iC and G9 5 B9 1 iC9 are complex constants,
and f*(z) and c*(z) are single-valued and holomorphic

1
b0

t 2 z*
1 OM

k51

bk

t 2 zk
1 OM

k51
2Ck logut 2 zku (22) at infinity. The real constants B, B9, C, and C9 have a direct

physical interpretation. Let N1 , N2 be the values of the
principal stresses at infinity, let a be the angle made by

1 OM
k51

Ck
t 2 zk

t 2 zk
5 h(t), the direction of N1 with the x axis, and let «y be the rotation

at infinity. Then B 5 (N1 1 N2)/4, B9 1 iC9 5 2(N1 2
N2)e22ia/2, and C 5 2e«y/(1 1 k). Since G and G9 must bewhere h(t) 5 h1(t) 1 ih2(t) and Ck , b0 , and bk are defined
given a priori, we will assume that they are both zero andas above. As in the stress problem, the integral equation
transform the boundary data if this is not so. With thisincludes an extra term involving b0 , which vanishes when
assumption, the stresses always vanish at infinity.the natural compatibility condition

The logarithmic terms in f and c are a little more compli-
cated. In the displacement problem, (X, Y) is the resultant

Re E
G

h(t) dt 5 0 vector of external forces acting on the whole boundary
G1 < ? ? ? < GM . It is not known in advance and determined

is satisfied. In physical terms, this requires that there be as part of the solution process. In the stress problem,
zero net flux across G. We omit a proof of invertibility of (X, Y) can be determined from the boundary data. In
the integral equation, since it follows the lines of the stan- either case, in order to have the displacement be bounded
dard proof in [17, 19] for the elasticity problems. at infinity one needs the resultant vector of the external

forces acting on the boundary to vanish.
3.4. The Completed Double Layer Method For Stokes flow in unbounded domains, the nature of

the behavior at infinity is slightly different. We will assumeIn a series of papers and texts [9, 18, 20–22], Karrila,
that there is no linear growth of the velocity in the farKim, Miranda, Power, and Pozrikidis have developed what
field, but we must allow for logarithmic growth (Stokesis referred to as the completed double layer method which,
paradox) [11]. We use the Goursat representationlike the Sherman–Lauricella approach, adds singular

source terms to a second-kind integral equation in order to
construct nonsingular systems. These methods have been f(z) 5

1
2fi

E
G

g(j)
j 2 z

dj 1 E
G

g(j) ds 1 OM
k51

Ck log(z 2 zk)
developed in both two and three dimensions and, hence,
are more general than the equations described above. Re-
markably, the integral equations obtained in the two-di- c(z) 5

1
2fi

E
G

g(j) dj 1 g(j) dj

j 2 z
2

1
2fi

E
G

jg(j)
(j 2 z)2 dj

mensional case are equivalent. In particular, Eq. (22) is
equivalent to a primitive variable formulation of Stokes

1 OM
k51

bk

z 2 zk
1 OM

k51
Ck log(z 2 zk) 2 OM

k51
Ck

zk

z 2 zk
,flow recently developed by Power. (His paper [20] includes

a thorough discussion of the Fredholm alternative.) To see
this equivalence, one need only rewrite the fundamental so that the leading term in the velocity field at y is
solutions expressed in primitive variables in terms of ana-
lytic functions [16]. The singular contributions

2 SOM
k51

CkD loguzu.

OM
k51

2Ck logut 2 zku 1 OM
k51

Ck
t 2 zk

t 2 zk
1 OM

k51

bk

t 2 zk In order for the problem to be well-posed,
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f(t) 1 tf9(t) 1 c(t) 1 fI(t) 1 tf9I(t) 1 cI(t) 5 0OM
k51

Ck 5 X 1 iY (23)

for t [ S. Matching appropriate terms, a straightforward
must be given. From (17) the integral equation is calculation yields the recursion relations

g(t) 1 E
G

g(j) ds 1
1

2fi
E

G
g(j) d ln

j 2 t

j 2 t
ck 5 kak 1 (k 2 1)z ak21 2 bk ,

dk 5 kck 1 (k 2 1)zck21 2 ak .
2

1
2fi

E
G

g(j) d
j 2 t

j 2 t
1 OM

k51
2Ck logut 2 zku (24)

Logarithmic sources are handled in an analogous fash-
ion. If1 OM

k51
Ck

t 2 zk

t 2 zk
1 OM

k51

bk

t 2 zk
5 h(t),

f(z) 5 A log(z 2 z), c(z) 5 A log(z 2 z) 2
Az

(z 2 z)
,where the constant C1 is determined by the constraint

equation (23) to be

then the image sources are
C1 5 X 1 iY 2 OM

k52
Ck , (25)

fI(z) 5 2A log(z 2 z) 1
A(z 2 z)

(z 2 z)and the remaining Ck and bk have the same definition as
in Section 3.3. Note that an additional term e

G
g(j) ds has

been added to f(z) in order to capture the constant term cI(z) 5 2A log(z 2 z) 1
A(z 2 z) 1 Az

(z 2 z)
1

Az(z 2 z)

(z 2 z)2
.

in the flow at infinity. It is not known a priori and is
computed as part of the solution process.

Imposing zero displacement conditions yields similar for-3.6. Semi-infinite Domains
mulae.

A variety of problems in fluid dynamics and elasticity
require the solution of the biharmonic equation when mul-

4. DESCRIPTION OF THE NUMERICAL METHODtiple obstacles are embedded in a half space S. By conven-
tion, we assume that S is the upper half plane y . 0. We

In order to solve the Sherman–Lauricella equations, wealso assume that the boundary conditions are homoge-
use a Nyström discretization based on the trapezoidal ruleneous along y 5 0. Inhomogeneous boundary conditions
since it achieves superalgebraic convergence for smoothalong this line can be imposed by first solving the half-
data on smooth boundaries. For this, we assume that wespace problem analytically in the absence of obstacles and
are given Nk points on each contour Gk , equispaced withthen subtracting the contribution of this solution from the
respect to some parametrization t k : [0, Lk] R Gk . Associ-desired boundary conditions on all boundary components.
ated with each such point, denoted by t k

j , is an unknownSuppose now that z [ S and that the Goursat functions
value gk

j . The derivative (t k)9 will be denoted by d k and
f and c are expressed as Laurent series about the point z:

we assume that we are given the derivative values dk
j at

the discretization points. The step length in the discretiza-
tion is defined by hk 5 Lk/Nk and the total number off(z) 5 Oy

k51

ak

(z 2 z)k , c(z) 5 Oy
k51

bk

(z 2 z)k .
points is

Let fI and cI be reflected Laurent expansions about the
point z, so that N 5 OM

k5k0

Nk ,

fI(z) 5 Oy
k51

ck

(z 2 z)k
, cI(z) 5 Oy

k51

dk

(z 2 z)k
.

where k0 5 0 for interior problems and k0 5 1 for exterior
or wall-bounded problems.

Consider now the stress problem, for which we need toIn order to impose zero velocity (or zero stress) conditions
on S we must satisfy solve the system (20). After discretization, we have
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The interior Stokes problem can be written in an analogous
gk

j 1 OM
m5k0

ONm

n51
K1(t k

j , t m
n )gm

n 1 OM
m5k0

ONm

n51
K2(t k

j , t m
n )g m

n 5 g k
j , fashion as

(26)
(I 1 K91 1 K92C )v 5 h, (32)

where g k
j 5 g(t k

j ) and the kernels K1 and K2 are given by
where

K1(t k
j , t m

n ) 5
hm

2fi S 2d m
n

t k
j 2 t m

n
1

d m
n

t k
j 2 t m

n
D1

ihmdmmd m
n

t k
j 2 zm

1 hmdkm K91(t k
j , t m

n ) 5 K1(t k
j , t m

n ) 1 2hmdmm logut k
j 2 zmu 2 hmdkm

K92(t k
j , t m

n ) 5 K2(t k
j , t m

n ) 1
hmdmm(t k

j 2 zm)

t k
j 2 zm

. (33)K2(t k
j , t m

n ) 5
2hm

2fi S 2d m
n

t k
j 2 t m

n

1
d m

n (t k
j 2 t m

n )

(t k
j 2 t m

n )2 D2
ihmdmmd m

n

t k
j 2 zm

.

(27)
However, for the purposes of iterative solution, it is advan-
tageous to separate out the influence of the singular sourcesIn the preceding expression for K1 , dkm is the usual Kro-
involving the constants Ck . To do this, we represent thenecker delta symbol, except that d00 ; 0. Furthermore,
Goursat functions f and c as in Eq. (21), but we considerwhen t k

j 5 t m
n , K1 and K2 should be replaced by the appro-

the Ck to be unknowns. To compensate for the increasepriate limits,
in the system size, we add M constraints of the form

K1(t k
j , t k

j ) 5
hk

2f
k k

j ud k
j u 1

ihkdkkd k
j

t k
j 2 zk

1 hkdkk

(28)
hk ONk

l51
gk

l 5 0. (34)

K2(t k
j , t k

j ) 5 2
hk

2f
k k

j (d k
j )2/ud k

j u 2
ihkdkkd k

j

t k
j 2 zk

,
The discrete equations may then be written as

where k k
j denotes the curvature at the point t k

j . (If the
curvature data is not given, the smooth kernels K1 and K2 SI 1 K E

F D
DSv

c
D5Sh

0
D , (35)

can be interpolated to high-order accuracy directly from
the definition.)

where K 5 K1 1 K2C ,Remark. We have omitted the term b0 in Eq. (20) since
its absence does not affect the behavior of the iterative

c 5 (C0 , C1 , ..., CM)Tsolution procedure we will employ. For a detailed discus-
sion of this point, see [13].

is the vector of unknown singular source strengths, and
It should be noted that the system (26), or for that

matter (20), is not simply a complex linear system for the
h 5 (h0

1 , ..., h0
N0

, ..., hM
1 , ..., hM

NM
)T

unknowns gk
i , since the conjugate values gk

i appear in each
equation as well. We could, of course, expand (26) in terms
of the real and imaginary parts of gk

i , but we will write is the vector of given boundary values of the velocity. The
the system as 2N by 2M matrix E represents the influence of the constants

Ck on the velocity field and the 2M by 2N matrix F repre-
sents the discrete constraint equations in (34). The block(I 1 K1 1 K2C )v 5 g, (29)
matrix D is zero for interior problems and incorporates
the constraint (23) for external flows. The other minorwhere C denotes the conjugation operator,
changes needed to treat external flows are discussed in
Section 3.5.

v 5 (gk01 , ..., gk0
Nk0

, ..., gM
1 , ..., gM

NM
)T, (30)

In our implementation, the matrix equations (29) and
(35) are solved iteratively using the generalized minimum
residual method GMRES [24]. In the case of Stokes flow,and
we use a preconditioner which eliminates the influence of
the logarithmic sources [4]. Thus, instead of solving the

g 5 (gk01 , ..., gk0
Nk0

, ..., gM
1 , ..., gM

NM
)T, (31)

linear system in (35), we solve the system
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For further details, we refer the reader to the original
papers [1, 3, 5, 6, 23].SI E

F D
D21SI 1 K E

F D
DSv

c
D5SI E

F D
D21Sh

0
D . (36)

Since the number of iterations needed to solve a
Fredholm equation of the second kind to a fixed precision

It is easy to verify that the rank of the preconditioned is bounded independent of N, we can estimate the total
matrix is determined by the integral operator terms K1 cost of solving the stress problem by
and K2 but it is no longer affected by the block matrices
E or F. cstr(«)A(«)N,

At each iteration, it is necessary to invert the precondi-
tioning matrix. This is accomplished as follows. We first where cstr(«) is the number of GMRES iterations needed
form the 2M by 2M Schur complement S of D in the to reduce the residual error to « and A(«) is the constant
preconditioner of proportionality in the FMM. Similarly, the cost of solv-

ing the Stokes problem is approximately

csto(«)A(«)NSI E

F D
D ,

in the original formulation and
given by

M 3/3 1 c9sto(«)(M 2 1 A(«)N)
S 5 D 2 FE. (37)

in the constrained formulation. As we shall see in the next
We then compute and store the LU factorization of S by section, the latter approach is superior for modest values
standard methods. To solve the linear system of M.

5. NUMERICAL RESULTSSI E

F D
DSzg

zc
D5Srg

rc
D , (38)

The algorithms described above have been implemented
in Fortran. Here, we illustrate their performance on a vari-

we first solve ety of examples. All timings cited are for an SGI Onyx
with a single R8000 processor.

Szc 5 rc 2 Frg (39) EXAMPLE 1. M 5 10. We first consider the problem of
Stokes flow in a bounded circular domain with 10 interior

and then compute zg from elliptical contours (Fig. 1). The data is obtained by choos-
ing a stream function of the form W(x, y) 5 x3 1 xy3 to

zg 5 rg 2 Ezc . (40) which are added singular solutions corresponding to

The initial factorization requires approximately M3/3 oper-
f(z) 5 O4

k51
log(z 2 zk) 1 O10

k55

2
z 2 zkations, while back-solving requires M2 operations at each

GMRES iteration.
The bulk of the work at each iteration, however, lies in c(z) 5 O4

k51
log(z 2 zk) 1 O10

k55

0.5
z 2 zk

,
applying the full matrix to a vector. The product

where the points zk , k 5 1, ..., 10, lie inside the 10 holes.
These points are distinct from the auxilliary points usedSI 1 K E

F D
DSv

c
D

in the Sherman–Lauricella representation.
In Fig. 2, we illustrate the performance of the

GMRES(m) iterative method on the unconstrained inte-can be computed in O(N 1 M) time using the adaptive
fast multipole method (FMM). Instead of the approach gral equation (32), the constrained equation (35), and the

preconditioned constrained equation (36). The parametertaken in [3], our implementation works with the analytic
functions f and c separately, so that it is easy to compute m represents the number of direction vectors which are

saved and orthogonalized against, before restarting thederivative quantities such as f9, f0, and c9. It is also easy to
extend such a version of the FMM to handle wall-bounded iteration. Each boundary component is discretized using

512 points and the right-hand side of the equation is used asproblems using the reflection formula from Section 3.6.
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FIG. 2. Performance of the GMRES iterative method for the unconstrained, constrained, and preconditioned integral equations for an interior
Stokes flow. The number next to each curve denotes the number of direction vectors saved before restarting the iteration.

the initial guess. If enough vectors are saved, then GMRES points. As an additional test, the velocity was computed
at several points inside the domain; the error was foundconverges satisfactorily in each case. If fewer vectors are

saved, the performance of the unpreconditioned con- to be consistently less than the error in the vorticity.
Note that the number of GMRES iterations is indepen-strained system is poor, the performance of the precondi-

tioned constrained system is very good, and the perfor- dent of the number of discretization points used and that
the CPU time grows linearly with the system size. Themance of the unconstrained system lies somewhere in

between. rapid convergence of the solution is consistent with the
spectral accuracy of the approach. Since we halted theTable I summarizes the performance of the precondi-

tioned constrained integral equation method as we refine GMRES iteration at a residual error of 10210, the error in
the vorticity is not reduced beyond approximately 1029.the spatial discretization. The columns indicate the number

of boundary points, the number of GMRES iterations re- EXAMPLE 2. M 5 100. We next consider a bounded
quired to reduce the Euclidean norm of the residual below Stokes flow with 100 interior circular contours (Fig. 3).
10210, the number of seconds of CPU time required for Such geometries arise in a variety of applications, including
the calculation, and the Euclidean norm of the error in the sedimentation of particles and porous media flow. The
computing the vorticity at the boundary discretization velocity is zero on the outer contour, while each interior

contour rotates with an angular velocity in the range
[21, 1]. Each boundary component is discretized using 100

TABLE I discretization points, resulting in a matrix of order 20400.
Performance of the Algorithm in Computing the Interior For six digits of accuracy, the preconditioned system re-

Stokes Flow of Example 1 quires 52 GMRES iterations and about 13 min CPU time.
Had the GMRES method been used with a conventional

N No. of iterations CPU time Error matrix–vector multiply routine, rather than the FMM,
about 11 h would have been required. Gaussian elimina-704 37 20 0.13 3 1021

tion, of course, would have required weeks (assuming suf-1408 37 41 0.37 3 1026

2816 37 98 0.28 3 1028 ficient memory were available).
5632 37 199 0.18 3 1028

EXAMPLES 3 and 4. M 5 80; M 5 100. Stokes flows in
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exterior domains are difficult to handle by conventional
finite difference and finite element methods since the com-
putational domain must be artificially truncated and proper
boundary conditions are not available on the artificial
boundary. In our third example (Fig. 4), we give constant
but distinct velocities vi , where ivii # 1, to each of 80
particles and specify that the flow be bounded at infinity.
Each boundary component is discretized using 100 points,
resulting in a matrix of order 16400. For six digits of accu-
racy, 368 iterations are required using GMRES(100), con-
suming about 80 min CPU time. Note from the figure that
the velocity approaches a constant away from the objects.
The value of this constant is determined as part of the
solution process (see Section 3.5). In our fourth example,
we set the velocity to zero on each of 100 contours in a
10 3 10 array of disks. In order to obtain a nontrivial
solution, we set the velocity to approach (log r, 0) as r R
y, consistent with Stokes paradox (Fig. 5). Each boundary
component is discretized using 100 points, resulting in a
matrix of order 20400. For five digits of accuracy, 40 itera-
tions are required using GMRES(100), consuming about
8 min CPU time.

EXAMPLE 5. M 5 3. While the domains in the preceding
FIG. 4. The bounded domain of Example 3. The upper left-hand plotexamples are multiply connected, the individual contours

shows the geometry, the upper right-hand plot shows contours of vorticity,
the lower left-hand plot shows contours of pressure, and the lower right-
hand plot shows the velocity field.

consist of rather simple shapes. In the present example, we
consider a wall-bounded Stokes flow around more complex
contours (Fig. 6). The velocity is set to (3, 0) on the leftmost
object, to (2, 0) on the middle object, to (1, 0) on the
rightmost object, and to (0, 0) on the wall (x-axis). Using
1000 points on each boundary, the integral equation re-
quired 95 GMRES iterations to obtain six digits of accu-
racy, consuming about 4 min of CPU time.

EXAMPLE 6. M 5 100. Our final example is a calculation
of plane stress in a semi-infinite region with 100 inclusions
of varying shape (Fig. 7). The integrated components of
stress are given by

Wx 1 iWy 5 Ak(z 2 zk) for z [ Gk ,

where Ak [ [0, 1] and zk is the center of the kth contour.
We compute the trace of the stress tensor and the energy
density D via Eqs. (13) and the formula

D 5
1

4e S2t 2
xy 1

s 2
x 1 s 2

y

(1 1 n)D ,FIG. 3. The bounded domain of Example 2. The upper left-hand plot
shows the geometry, the upper right-hand plot shows contours of vorticity,
the lower left-hand plot shows contours of pressure, and the lower right-

where the shear modulus e and Poisson’s ratio n have beenhand plot depicts a detail of the velocity field in the vicinity of four
interior contours. set to 1 and Af, respectively [18]. With 128 points on each
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FIG. 5. The bounded domain of Example 4. The upper left-hand plot FIG. 7. Plane stress in a semi-infinite domain with one hundred inclu-
shows the geometry, the upper right-hand plot shows contours of vorticity, sions (Example 6). The upper left-hand plot shows the geometry. The
the lower left-hand plot shows contours of pressure, and the lower right- upper right-hand plot shows contours of the trace of the stress tensor,
hand plot shows the velocity field. and the lower left-hand plot shows contours of the energy density.

contour, 36 GMRES iterations are required, consuming our solution procedure requires O(N) operations, where
1100 s CPU time. N is the number of nodes in the discretization of the

boundary.
6. CONCLUSIONS An immediate extension of this work is to solve forced

or inhomogeneous biharmonic problems
We have presented a class of integral equation methods

for the solution of biharmonic boundary value problems
DDW 5 f.

in bounded, unbounded, and wall-bounded domains. With
the use of a fast-multipole accelerated iterative method,

One simply computes a volume integral

W(x, y) 5 E uP 2 Qu2 loguP 2 Qu f(Q) dQ,

using the scheme introduced in [12], and then corrects the
boundary conditions with the integral equation techniques
described above. (For a discussion of this approach in the
context of the Poisson equation, see [14].) Solutions to
mildly nonlinear systems, such as low Reynolds number
flows, can be found by solving a sequence of forced Stokes
problems [7].

APPENDIX

FIG. 6. The wall-bounded flow of Example 5. The left-hand plot
Let us consider the singular solutions we add in theshows contours of the vorticity and the right-hand plot shows the veloc-

ity field. modified Sherman–Lauricella representation (21), namely
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